Sorting Algorithms
Fundamental algorithms for arranging elements in a specific order.
Why Sorting Matters
Sorting is one of the most fundamental operations in computer science. Many other algorithms (like binary search) require sorted data to work efficiently.
💡 Fun fact: It's estimated that 25% of all CPU cycles are spent on sorting!
Algorithm Comparison
| Algorithm | Best | Average | Worst | Space | Stable |
|---|---|---|---|---|---|
| Bubble Sort | O(n) | O(n²) | O(n²) | O(1) | ✅ |
| Selection Sort | O(n²) | O(n²) | O(n²) | O(1) | ❌ |
| Insertion Sort | O(n) | O(n²) | O(n²) | O(1) | ✅ |
| Merge Sort | O(n log n) | O(n log n) | O(n log n) | O(n) | ✅ |
| Quick Sort | O(n log n) | O(n log n) | O(n²) | O(log n) | ❌ |
| Heap Sort | O(n log n) | O(n log n) | O(n log n) | O(1) | ❌ |
🫧 Bubble Sort
Repeatedly swaps adjacent elements if they're in the wrong order. Like bubbles rising to the surface—largest elements “bubble up” to the end.
⚠️ Not recommended for large datasets. O(n²) is very slow!
function bubbleSort(arr) {
const n = arr.length;
for (let i = 0; i < n - 1; i++) {
for (let j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// Swap adjacent elements
[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
}
}
}
return arr;
}
// Example: [5, 2, 8, 1] → [1, 2, 5, 8]🃏 Insertion Sort
Builds the sorted array one element at a time, like sorting playing cards in your hand. Great for small or nearly-sorted arrays!
✅ Best for: Small arrays (n < 50) or nearly sorted data.
function insertionSort(arr) {
for (let i = 1; i < arr.length; i++) {
const key = arr[i];
let j = i - 1;
// Move elements greater than key one position ahead
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = key;
}
return arr;
}🔀 Merge Sort
Divide and conquer: Split the array in half, sort each half, then merge them back together. Guaranteed O(n log n)!
💡 Merge Sort is stable (preserves order of equal elements) and has consistent O(n log n) performance. Used in many standard libraries.
function mergeSort(arr) {
if (arr.length <= 1) return arr;
const mid = Math.floor(arr.length / 2);
const left = mergeSort(arr.slice(0, mid));
const right = mergeSort(arr.slice(mid));
return merge(left, right);
}
function merge(left, right) {
const result = [];
let i = 0, j = 0;
while (i < left.length && j < right.length) {
if (left[i] <= right[j]) {
result.push(left[i++]);
} else {
result.push(right[j++]);
}
}
return [...result, ...left.slice(i), ...right.slice(j)];
}⚡ Quick Sort
Pick a pivot, partition the array so all smaller elements are on the left and larger on the right, then recursively sort each partition.
⚠️ Worst case O(n²) with bad pivot choice (already sorted array). Use randomized pivot to avoid this!
function quickSort(arr, left = 0, right = arr.length - 1) {
if (left < right) {
const pivotIndex = partition(arr, left, right);
quickSort(arr, left, pivotIndex - 1);
quickSort(arr, pivotIndex + 1, right);
}
return arr;
}
function partition(arr, left, right) {
const pivot = arr[right]; // Use last element as pivot
let i = left - 1;
for (let j = left; j < right; j++) {
if (arr[j] < pivot) {
i++;
[arr[i], arr[j]] = [arr[j], arr[i]];
}
}
[arr[i + 1], arr[right]] = [arr[right], arr[i + 1]];
return i + 1;
}Which Algorithm to Use?
Use Insertion Sort — simple and fast for small data
Use Merge Sort — consistent performance, stable
Use Quick Sort — best average performance, in-place
Use Heap Sort — O(1) space, guaranteed O(n log n)
Use Merge Sort or Insertion Sort
Content adapted from Hello 算法 - Sorting by Krahets, licensed under CC BY-NC-SA 4.0.